

PRODUCT DESCRIPTION

If you are looking for a bold, powerful roofing and cladding profile then LT7 should be your choice. Designed for applications where protection from severe climatic conditions and maximum structural economy is required, the strong section properties of LT7 allow for wider purlin and girt spacings which add extra economy to building projects. It also has excellent water shedding characteristics as well as being perfect for low pitch roofs. Can also be supplied as LT5 (5 Ribs wide).

DESIGN GUIDELINES

Recommend use when:

- Roof pitch is 3° and above
- Max purlin spacing does not exceed wind uplift load from the LT7 load span charts
- Specify coating on steel to match the environment
- Can be used as wall cladding either vertical or horizontal
- Specify fixing type and length to be used with the correct purlin material
- Ensure there is an allowance for thermal expansion on sheet lengths above 20 m
- Can be installed on top of cavibat ventilation batten

BUILDING CODE COMPLIANCE

The product will, if used in accordance with the Dimond installation and maintenance requirements, assist with meeting the following provisions of the building code for a period of 15 years:

- Clause B2 Durability: Performance B2.3.1
- Clause C3 Fire affecting areas beyond the fire source: Buildings C3.3
- Clause E2 External moisture: Performance E2.3.1, E2.3.2
- Clause F2 Hazardous building materials: Performance F2.3.1

EVIDENCE MEETS NZBC

Test information available from Pacific Coilcoaters and New Zealand Steel, and past history of use of long run metal roofing and cladding products in New Zealand indicate that, provided the product use and maintenance is in line with the guidelines contained in the current literature referenced, Dimond ${ }^{\circledR}$ Roofing long run metal roofing \& wall cladding systems can be expected to meet the performance criteria in clause B2,C3, E2 and F2 of the New Zealand Building Code, for a period of not less than 15 years.

SUPPORTING EVIDENCE

The product has and can make available the following additional evidence to support the above statements:

NZ Metal Roofing Manufacturers Association Inc. (NZMRM)
Code of Practice

ENVIRONMENTAL

Manufactured from coated steel produced by New Zealand Steel at Glenbrook from Ironsand mined off North Island's West coast and Zincalume ${ }^{\circledR}$ coated.

COLOURSTEEL ${ }^{\circledR}$ is factory painted at New Zealand Steel, Glenbrook or if its ColorCote ${ }^{\circledR}$ its painted at Pacific Coilcoaters Penrose. ColorCote ${ }^{\circledR}$ MagnaFlow ${ }^{\top \boldsymbol{T M}}$ base coated steel and coating is imported from Asia, but painted at Pacific Coilcoaters in Penrose. Both NZ sites operate within strict environmental controls and recycle cleaning and washing water and control that is exhausted into the environment.

Dimond ${ }^{\circledR}$ Roofing recycle all steel scrap waste and offcuts which can then be remelted down and reused in other steel based products.

At the end of its useful life as a roofing profile can be recycled back by remelted down.
Aluminium is imported from overseas and painted at New Zealand at Pacific Coilcoaters.
Duraclad ${ }^{\circledR}$ is manufactured in Auckland under tight environmental controls.

COATINGS \& CLASSES

Manufactured using different paint coatings available from New Zealand Steel or Pacific Coilcoaters depending on the durability required for the environment the roof or wall will be installed in, in accordance with AS/NZS 2728. As a guide for areas 1 m to 50 m of breaking surf, use ColorCote ${ }^{\circledR}$ AlumiGard ${ }^{\text {M }}$ or plain unpainted aluminium. Sites within 50 m to 100 m of breaking surf COLOURSTEEL ${ }^{\circledR}$ MAXX ${ }^{\circledR}$ can be used, then at 100 m (Category 4) ColorCote ${ }^{\circledR}$ MagnaFlow ${ }^{\top M}$ (ZM8) can be used, beyond $200 m$ (Category 3) then ColorCote ${ }^{\circledR}$ ZinaCore ${ }^{T M}$ (ZR8) or COLOURSTEEL® ${ }^{\circledR}$ ENDURA, ${ }^{\circledR}$ and beyond can use Zincalume. ${ }^{\circledR}$

Refer to environmental literature available from Pacific Coilcoaters or New Zealand Steel or contact Dimond ${ }^{\circledR}$ Roofing on 0800 766377.

Duraclad ${ }^{\circledR}$ is recommended for use in special areas such as fertiliser works or very severe marine.

SPANS

Product	Material	Thickness BMT (mm)	Roofing Max. Span End Span (m)*	Roofing Max. Span Internal (m)*	Walls Max. Span End Span (m)	Walls Max. Span Internal (m)
$\begin{gathered} \text { LT7 } \\ \text { (min. pitch } 3^{\circ} \text {) } \end{gathered}$	Steel (G550)	0.40	1.20	1.80	1.60	2.40
		0.55	1.90	2.90	2.30	3.40
	Aluminium (H36)	0.70	0.90	1.30	1.20	1.80
		0.90	1.50	2.30	1.90	2.80
	Duraclad ${ }^{\text {® }}$ (GRP)	1.70	0.80	1.20	1.30	2.00

GRP = Glass reinforced plastic
*Spans for roofing where the maximum serviceability wind uplift load does not exceed 1.5 kPa or under foot traffic is suitable for restricted access.
Spans for walls are limited by an acceptable appearance or a serviceability wind uplift load of 1.0 kPa .
*For more information, please refer to Dimond Roofing website http://www.dimond.co.nz/products/lt7

FIXINGS

Purlin Material	Screw Fastener			
	Roofing Rib		Wall Cladding Plan	
	Screw Length* (mm)	Designation (gauge-TPi x length)	Screw Length* (mm)	Designation (gauge-TPi x length)
Timber	75	T17-14-10 $\times 75$	50	Roofzip M6 x 50 HG-Z4
Steel	65	$\begin{aligned} & \text { Tek - } 14-10 \times 65 \\ & \text { Tek }-12-14 \times 68 \end{aligned}$	20	Tek - 12-14 $\times 20$

[^0]
FIXINGS CONT.

The Limit State Load/Span Capacity Chart is based on 4 screw fasteners/sheet/purlin without the use of load spreading washers (except for Duraclad ${ }^{\circledR}$ material, which must be fitted with profiled metal washers and 36 mm EPDM seals).

Spans may require the specification and use of side lap stitching screws.

Materials	Thickness (mm)	Maximum Side Lap Fastener Spacing (mm)
Steel	0.40	1500
	0.55	2000
Aluminium	0.75	2400
Duraclad ${ }^{\circledR}$ (GRP)	0.70	1500
Rib height greater than 30mm	0.90	2000

Our recommended side-lap fasteners for stitching sheets together are:
Metal Sheeting

$10-16 \times 16 \mathrm{~mm}$	Hex head	Tek screws
$10-12 \times 20 \mathrm{~mm}$	Hex head	Type 17 screws

INSTALLATION REQUIREMENTS

Dimond LT7 Fastener Layout Options

Can be installed over plastic cavibat battens.
For more information, please refer to Dimond ${ }^{\circledR}$ Roofing website http://www.dimond.co.nz/products/lt7

SPECIAL CONDITIONS

Manufactured in Wellington and Invercargill, with crimp curving at Wellington only.

[^0]: *If sarking, cavity batten or insulation is used over the purlins or for wall cladding fixed through a cavity batten, into the stud, the screw length will need to be increased by a least the sarking, insulation or cavity batten thickness.

